2. The Zariski topology
2.1 Basic definitions

Big picture
\rightarrow defined affine varieties $X \leq A^{n}$ as sets and polynomial functions $x \rightarrow K$
\rightarrow next: Start to give more structure analogue: define \mathbb{R} as set, then metric space, abelian group,
\rightarrow this section: place topology on X field, \leadsto this determines many properties of X studied later (e.g. decomposition in components, dimension)

Refresher on basic topology: see appendix.
Def Let X be an affine variety. The Zariski topology on X is the topology whose closed sets are the affine subvarieties $Y=V_{x}(S) \subseteq X$, for $S \subseteq A(X)$.

Basic exercise Check that this is a topology!
Example for $X=A_{1}^{1}$, the Zanski topology is the cofinite toper $\leadsto Y \subseteq A^{1}$ closed $\Leftrightarrow Y$ finite or $Y=A^{1}$.

Fun and unnecessary exercise (Zariski topology is weird)
\rightarrow Show that every non-repeating sequence $a_{1}, a_{2}, a_{3}, \ldots \in A A^{1}$ (ie $a_{n} \neq a_{m}$ for $n \neq m$) converges to any point $a \in \mathbb{A}^{1}$.
\rightarrow Show that any infective map $f: A^{\wedge} \rightarrow A^{1}$ is continuous in the Zariski topology.
\rightarrow Pick a list of your favorite properties of top. spaces (Hausdorff, compact, connected,...) and check whether A^{1} with Zariski topology has them.
\rightarrow As sets, we have $A^{2}=A_{1}^{1} \times A^{1}$. Show, however, that the product topology (from Zariski-top of A^{1}) on $A^{1} \times A^{1}$ is not the Zariski-topology on A^{2}.
Hint: consider the diagonal $\Delta=\left\{(a, a): a \in \mathbb{A}^{1}\right\} \leq \mathbb{A}^{2}$.
Prove that it is closed in the Zariski-topology, but not the product topology (this last claim uses something about K).

Note Zariski topology on $X \subseteq A^{n}=$ relative top. of Tar. top of A^{n} (subvarichies of $X=$ affine varieties in A^{n} contained in X).

Summary The Zariski topology is weird, but
\rightarrow defined over every alg. closed field K
\rightarrow good enough for some purposes.
2.2. Irreducible and connected components

Big picture
We want to decompose an affine variety X into a union of simpler/more fundamental pieces $X=X_{1} \cup X_{2} \cup \cdots \cup X_{r}$.

Example Inside A^{2} consider $X=V\left(x y-x^{3}\right)$ and $Y=V\left(x^{2}-3 x+2\right)$

$$
\begin{aligned}
X & =V\left(\left(y-x^{2}\right) \cdot x\right) \\
& =\frac{V\left(y-x^{2}\right)}{X_{1}} \cup \frac{V(x)}{x_{2}}
\end{aligned}
$$

$$
\begin{aligned}
Y & =V((x-1)(x-2)) \\
& =\frac{V(x-1)}{Y_{1}}, \frac{V(x-2)}{Y_{2}}
\end{aligned}
$$

Note. X looks connected, but is the union of aff.varicties X_{1}, x_{2}

- Y looks disconneded, with components y_{1}, y_{2}
- decompositions are visible on the algebra side as factorizations

Def (Irreducible and connected spaces)
Let X be a topological space.
(a) We say that X is reducible if it can be written as $X=X_{1} \cup X_{2}$ for closed subsets $X_{1}, X_{2} \subsetneq X$.
Otherwise X is called irreducible.
(b) The space X is called disconnected if it can be written as $X=X_{1} \cup X_{2}$ for closed subsets $X_{1} X_{2} \subsetneq X$ with $X_{1} \cap X_{2}=\varnothing$. Otherwise X is called connected.

Note disconnected \Rightarrow reducible, and so irreducible \Rightarrow connected.
Exa In above example:

- both X, Yare reducible
- Y is disconnected (since $Y_{1} \cap Y_{2}=\varnothing$).

Below we show:

- X is connected $\cdot X_{1}, X_{2}, Y_{1}, Y_{2}$ are irreducible

Note- Intuitively, A1^ should be irreducible, and it is for the Zaniski topology (see below).

- For $K=\mathbb{C}$, taking $A_{\mathbb{C}}^{1}=\mathbb{C}$ with the classical /Euclidean topology, we have:
$\mathbb{C}=\{x \in \mathbb{C}:|x| \leq 1\} \cup\{x \in \mathbb{C}:|x| \geq 1\} \Rightarrow \mathbb{C}$ is reducible
both closed, proper subsets of \mathbb{C}
One nice feature of irreducible spaces: open sets are big! Exercise Let X le an irreducible space. Show that
(a) Any two non-empty open subsets $U_{11} U_{2} \subseteq X$ have non-empty intersection $U_{1} \cap U_{2}$.
(b) Any hon-empty open subset $U \leq X$ is dense (ie. $\bar{U}=x$).

Solution [Gathmann, Remark 2.16]

Irreducible affine varieties
Big picture

- Definition of (ir reducible \& (dis)conneded are easy to state, but hard to check
- Next we use tools from commutative algebra to relate these properties of x to suitable properties of is ideal $I(x)$.

Poo For an affine variety $\varnothing \neq X \leq A^{n}$ the following are equivalent:
(i) X is irreducible.
(ii) $A(x)$ is a domain.
(iii) $I(X) \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ is a prime ideal.

Poof Since $A(x)=K\left[x_{1} \ldots x_{n}\right] / I(x)$, the equivalence (i) \Leftrightarrow (iii) follows from general commutative algebra:
Lem R ring, $I \subseteq R$ ideal. Then R / I is a domain ff I is prime. (i) \Rightarrow (ii) Assume $A(x)$ is not an integral domain, and let $f_{1}, f_{2} \in A(x)$ nonzero with $f_{1} f_{2}=0$. Take $X_{1}=V_{x}\left(\left\langle f_{1}\right\rangle\right)$ and $X_{2}=V_{x}\left(\left\langle f_{2}\right\rangle\right)$.
$f_{i} \neq 0 \Rightarrow X_{i} \nsubseteq X$. On the other hand:

$$
X_{1} \cup X_{2}=V_{x}\left(\left\langle f_{1}\right\rangle \cdot\left\langle f_{2}\right\rangle\right)=V_{x}\left(\left\langle f_{1} f_{2}\right\rangle\right)=V_{x}(\langle 0\rangle)=X
$$

(ii) \Rightarrow (i) Assume $X=X_{1} \cup X_{2}$ is reducible with $X_{1} X_{2} \leqslant X$ dosed.

Since $X_{i} \neq X \stackrel{\text { relative }}{\text { Nulstelumanz }}{ }_{2} I_{x}\left(x_{i}\right) \neq\{0\}=I_{k}(x)$. Choose $0 \neq f_{i} \in I_{x}\left(x_{i}\right) \leq A(x)$
Claim: $f_{1} f_{2}=0$. Indeed: $\left.f_{1}\right|_{x_{1}}=0,\left.f_{2}\right|_{x_{2}}=0 \Rightarrow 0=f_{1}-\left.f_{2}\right|_{x_{1} u x_{2}}=\left.f_{1} f_{2}\right|_{x}=f_{1} f_{2}$
But $f_{1} \neq 0, f_{2} \neq 0$ by assumption $\Rightarrow A(x)$ is not a domain.
Cor Given an affine variety Y, there is a bijection

$$
\left\{\begin{array}{c}
\text { non-empty irreducible affine } \\
\text { subvarieties in } y
\end{array}\right\} \underset{V_{y}(-)}{\stackrel{I_{y}(-)}{\leftrightarrows}}\left\{\begin{array}{c}
\text { Prime ideals } \\
\text { in } A(y)
\end{array}\right\}
$$

PP Restrict the corresponding bijection $\{$ subvar. in $Y\} \rightleftarrows\{$ rod. ideals in $A(y)]$ from the relative Nuelstellensatz using the proposition above. I

Exa
(a) A finite affine variety $Y=\left\{y_{1}, \ldots y_{r}\right\}$ is irreducible if and only if it is connected if and only if it contains at most $r \leq 1$ points. [Otherwise take $y_{1}=\left\{y_{1}\right\}, y_{2}=\left\{y_{2}, \cdots y_{r}\right\} \Rightarrow y_{1} \cup y_{2}=y_{1}, y_{1} \cap y_{2}=\varnothing$.] In this case indeed $A(Y)=K$ is a domain.
(b) Affine space A^{n} is irreducible (and thus connected) since $A\left(A^{n}\right)=K\left[x_{1}, \ldots, x_{n}\right]$ is an integral domain.
(c) Recall the example

$$
X=V\left(y x-x^{3}\right)=\frac{V\left(y-x^{2}\right)}{x_{1}} \cup \underbrace{V(x)}_{x_{2}} \subseteq A^{2}
$$

We saw: X is reducible.
However: $X_{11} X_{2}$ are irreducible!

- $A\left(X_{1}\right)=K[x, y] /\left\langle y-x^{2}\right\rangle \cong K[x]$ is adomain
- $A\left(x_{2}\right)=K[x, y] /\langle x\rangle \cong K[y]$

Similar for $y=\frac{V(\langle x-1\rangle)}{y_{1}} \cup \frac{V(\langle x-2\rangle)}{y_{2}}$.
\Rightarrow We have decomposed X into a finite union of irreducible spaces! Next: study class of spaces for which such decompositions exist.

Noetherian topological spaces \& irreducible decompositions
Def A topological space X is called Noetherian if there is no infinite strictly decreasing chain

$$
X_{0} \nsupseteq X_{1} \ngtr X_{2} \nsupseteq \cdots
$$

of closed subsets of X.

Exercise Show that $\left(\mathbb{R}^{n}\right.$, Euclid. topology) is not Noetherian.
Lem Any affine variety X is a Noetherian topological space.
Proof Assume we had a decreasing chain $X_{0} \supsetneq X_{1} \nsupseteq \cdots$ as above. Applying the inclusion reversing bisect. $I_{x}(-)$ to this, we obtain an increasing chain

$$
\begin{equation*}
I_{0} \subsetneq I_{1} \subsetneq I_{2} \subsetneq \cdots \subseteq A(X) \tag{*}
\end{equation*}
$$

of ideals in $A(X)$. But we have:

- $A(x)=K\left[x_{1}, \ldots, x_{n}\right] / I(x)$
contains no infinite increasing
- $K\left[x_{1}, \ldots, x_{n}\right]$ is a Noetherian ring. chain of ideals
- Quotients of Noetherian rings are Noetherian rings. This gives a contradiction to (*).

Later, we will also consider subsets of affine varieties, egg. Open subsets such as $A^{n} \backslash\{0\}$. These are also Noetherian:

Pro Any subset A of a Notherian space X is also Noetherian. Proof Assume we had a strictly decreasing sequence

$$
\begin{equation*}
A_{0} \supsetneq A_{1} \supsetneq A_{2} \supsetneq \cdots \tag{A}
\end{equation*}
$$

of closed subsets of A (in the relative topology).
By definition: \exists closed subsets $X_{i} \subseteq X$ with $A_{i}=X_{i} \cap A$. Then

$$
\begin{equation*}
X_{0} \supseteq X_{0} \cap X_{1} \supseteq X_{0} \cap X_{1} \cap X_{2} \supseteq \cdots \tag{x}
\end{equation*}
$$

is a decreasing sequence of closed subsets of X.
To see that inclusions are strict: $X_{0} \cap X_{1} \cap \cdots \cap X_{i-1} \cap X_{i} \cap A=A_{1}$.
\Rightarrow if one inclusion in $\left(x_{x}\right)$ was an equality, we would have $A_{i}=A_{i+1}$ ito $\left(*_{A}\right)$.

Pro (Irreducible decompositions of Noetherian Spaces) Every Noetherian topological space X can be written as a finite union $X=X_{1} \cup X_{2} \cup \cdots \cup X_{r}$ of nonempty irreducible closed subsets. If one assumes $X_{i} \nsubseteq X_{j}$ for $i \neq j$, then $X_{1} \ldots X_{r}$ are unique (up to permutation).
They are called the irreduable components of X.
Proof Case $X=\varnothing$ is fine (take $r=0 \sim$ empty union).
Existence
Assume $X \neq \varnothing$ was not a finite union of irreducible sets.
$\Rightarrow X$ is not irreducible (otherwise take $r=1, x_{1}=x$).

$$
\begin{aligned}
& \text { Eg } x=V\left(x-x^{-x}\right) \\
& =V\left(y-x^{2}\right) \cup V(x) \text {. }
\end{aligned}
$$

X reducible $\leadsto X=X_{1} \cup X_{1}^{\prime}$ with $X_{1}^{\prime}, X_{2}^{\prime} \subset X$ strict dosed subsets If both X_{1}, X_{1}^{\prime} were finite unions of irked. sets, we would get contradict.
\rightarrow wog say X_{1} is not such a union.
\rightarrow repeat the argument to find $X_{2} \subseteq X_{1}$.
\leadsto By continuing: find sequence $X_{\ngtr} X_{1} \nRightarrow X_{2} \ngtr \cdots$ ζ to x Metherian
Uniqueness
Assume we had two decompositions

$$
X=X_{1} \cup X_{2} \cup \cdots \cup X_{r}=X_{1}^{\prime} \cup \cdots \cup X_{r^{\prime}}^{\prime}
$$

with $X_{i} \nsubseteq X_{j}$ and $X_{i}^{\prime} \ddagger X_{j} \quad \forall i \neq j$. (t)
For $i_{0} \in\left\{1_{1}, r, r\right\}$ fixed, we have a covering

$$
x_{i}=x_{i} \cap X=\left(x_{i 0} \cap x_{1}^{\prime}\right) \cup \cdots\left(x_{i c^{\prime}} \cap x_{r^{\prime}}^{\prime}\right)
$$

of $X_{i_{0}}$ by closed sets $\xrightarrow{X_{i 0} \text { irred }} X_{i o n} \cap X_{0}: X_{i_{0}}=X_{i_{0}} \cap X_{j_{0}}^{\prime} \Rightarrow X_{i_{0}} \leq X_{j_{0}}^{\prime}$
Repeat argument with $X_{j_{0}}^{\prime} \Rightarrow \exists i_{0}^{\prime}: X_{j_{0}}^{\prime} \subseteq X_{i 0}$
But then: $X_{i_{0}} \subseteq X_{i_{0}}^{\prime} \subseteq X_{i_{0}} \xrightarrow{\uplus} \hat{i}_{0}=i_{0}^{\prime}$ and so $X_{i_{0}}=X_{i_{0}}^{\prime}$.
This shows: any X_{i} appearing on the Left side of (k) also appears on the right side (and vice versa)
\Rightarrow the sets $\left\{x_{i: i}=1, \ldots, r\right\}$ and $\left\{x_{j}^{j}: j=1, \ldots, r^{\prime}\right\}$ agree.

Irreducible decomposition of affine varieties
Let $X \subseteq A^{n}$ be an affine variety with ideal $I=I(X) \leq K\left[x_{1}, \ldots, x_{n}\right]$
Since X is Noetherian, it has an irreducible decomposition

$$
\begin{equation*}
X=X_{1} \cup \cdots \cup X_{r} \tag{*}
\end{equation*}
$$

Q How to compute the decomposition (*) in practice?
A Compute the primary decomposition of I :

$$
I=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{r} \leqq K\left[x_{1}, \ldots, x_{n}\right]
$$

for primary ideals Q_{i}. Let $P_{i}=\sqrt{Q_{i}}$, then P_{i} is prime.

$$
Q_{i} \not \hat{f}\left[x_{1} \ldots x_{n}\right]
$$

$\forall a-b \in Q_{i}: a \in Q_{i}$ or $\exists m: b^{m} \in Q_{i}$ In fact:

$$
\begin{aligned}
& \forall a-b \in Q_{i}: a \in Q_{i} \text { or } I m: b^{b} \in Q_{i} \\
& \frac{I}{\text { In }}=\sqrt{I}=\sqrt{\bigcap_{i=1}^{n} Q_{i}} \xlongequal{\text { Check }} \bigcap_{i=1}^{n} \sqrt{Q_{i}}=\bigcap_{i=1}^{n} P_{i}
\end{aligned}
$$

Then

$$
X=V(I)=V\left(P_{1}\right) \cup V\left(P_{2}\right) \cup \cdots \vee V\left(P_{r}\right)
$$

$$
\uparrow \quad \uparrow \quad \cdots-\uparrow
$$

these are irreducible since P_{i} prime
Setting $X_{i}=V\left(P_{i}\right)$ and possibly removing non-minimal primes P_{i} \leadsto obtain irreducible decomposition (*).
Another angle:
Exercise
X affine variety, then the irreducible components X_{i} of X are precisely the maximal irreducible subvarieties of X.
${ }^{3}$ with respect to inclusion.
Hint Use the uniqueness of the irreducible decomposition.

Cor There is a bijection

$$
\left\{\begin{array}{c}
\text { irreducible } \\
\text { components } \\
\text { of } X
\end{array}\right\} \xrightarrow[\sim]{\sim}\left\{\begin{array}{c}
\text { minimal } \\
\text { prime ideals } \\
\text { of } A(X)
\end{array}\right\}
$$

$P_{f}\{$ subvar. of $X\}$

$$
\mathcal{V} I_{x}(-)
$$

$\{$ Rime ideals of $A(x)$ \}
inclusion reversing.

Connected components of affine varieties
Recall X top space
$\Rightarrow X=$ union of its conneded components
For X Noetherian, these can be obtained as follows:
Step 1 Start with the irreducible components

$$
X=X_{1} \cup X_{2} \cup \cdots \cup X_{r}
$$

Step 2 Consider the graph Γ_{x} with vertices $V=\left\{1_{1}, \ldots, r\right\}$ and an edge (1)-(3) if and only if $X_{i} \cap X_{j} \neq \varnothing$.
Step 3 Connected components of X =(Path) conneded components of T_{x}.
 two vertices are in same component inf they are connected by a chain of edges

Exercise Prove this.
Hint See useful Lemma in Appendix on conn. components.
With this, we can finish our TODO-List:

$$
X=V\left(y x-x^{3}\right)=x_{1} \cup x_{2}
$$

have:

$$
\text { have: } \begin{aligned}
X_{1} \cap X_{2} & =V\left(\left\langle y-x_{1}^{2}, x\right\rangle\right) \\
& =V(\langle y, x\rangle)=\{(0,0)\} \neq \varnothing \\
\Rightarrow \Gamma_{x}=(1) & \text { is conceded } \Rightarrow X \text { conneded. }
\end{aligned}
$$

As before, we can also detect connectedness from the ring of polynomial functions $A(X)$:

Pop Let $X=X_{1} \cup X_{2}$ be a disconnected affine variety with $X_{11} X_{2} \subseteq X$ disjoint closed subsets. Then the map

$$
A(x) \longrightarrow A\left(x_{1}\right) \times A\left(x_{2}\right), \quad f \mapsto\left(\left.f\right|_{x_{1}}, f \mid x_{2}\right)
$$

is an isomorphism.
Idea

\leadsto to obtain function on X
we just specify functions on $X_{11} X_{2}$ independently.

Proof we saw before that $A\left(X_{i}\right)=A(X) / I_{x}\left(X_{i}\right)$, and the restriction map above is just the natural ring homomorphism

$$
A(x) \longrightarrow\left(A(x) / I_{x}\left(x_{1}\right)\right) x\left(A(x) / I_{x}\left(x_{2}\right)\right) .
$$

Chinese Remainder Theorem
R ring with ideals $I_{1} I_{2} \subseteq R$ that are corrine: $I_{1}+I_{2}=R$.
Then for $I=I_{1} \cap I_{2}$, the map

$$
R / I \longrightarrow\left(R / I_{1}\right) \times\left(R / I_{2}\right)
$$

is an isomorphism.
Applying this to $R=A(x), I_{j}=I_{x}\left(x_{j}\right)$: suffices to show $\left\{\begin{array}{l}I_{n} n I_{2}=\left\{I_{1}+I_{2}=R\right.\end{array}\right.$

- As $X=X_{1} \cup X_{2}$, we have

$$
I_{x}\left(X_{1}\right) \cap I_{x}\left(X_{2}\right)=I_{x}\left(X_{1} \cup X_{2}\right)=I_{x}(X)=\{0\}
$$

- As $X_{1} \cap X_{2}=\varnothing$, we have

$$
\begin{aligned}
& \sqrt{I_{x}\left(x_{1}\right)+I_{x}\left(x_{2}\right)}=I_{x}\left(X_{1} \cap x_{2}\right)=I_{x}(\varnothing)=A(x)=\langle 1\rangle \\
& \Rightarrow \exists m \geq 1: 1^{m}=1 \in I_{x}\left(x_{1}\right)+I_{x}\left(x_{2}\right) \Rightarrow I_{x}\left(x_{1}\right)+I_{x}\left(x_{2}\right)=\langle 1\rangle .
\end{aligned}
$$

Cor $A(X)=\prod_{\substack{\widetilde{x} \subseteq x \\ \text { conned. comp. }}} A(\widetilde{X})$.

Dimension of topological spaces
Big Picture
\rightarrow For a geometric space X, an important invariant is its dimension $\operatorname{dim}(X)$

$$
\text { is its dimension } \operatorname{dim}(X)
$$

\rightarrow In many areas (linear algebra, differential geometry,...) it is defined via the number of (local) degrees of freedom
\rightarrow For affine varieties, we can instead give a purely topological characterization via chains of irreducible subsets

Def (Dimension \& codimension)
Let X be a non-empty topological space. $\mathcal{T}^{\mathbb{N}}=\{0,1,2, \ldots\}$
(a) The dimension $\operatorname{dim}(X) \in \mathbb{N} \cup\{\infty\}$ is the supremum over all $n \in \mathbb{N}$ such that there is a chain

$$
\varnothing \neq Y_{0} \subseteq Y_{1} \subseteq Y_{2} \subseteq \cdots \subseteq Y_{n} \subseteq X
$$

of length n of irreducible closed subsets Y_{i} of X.
(b) If $Y \subseteq X$ is a non-empty irreducible closed subset of X, the codimension codim $x y$ of Y in X is again the supremum over all n such that there is a chain

$$
y \subseteq y_{0} \subset y_{1} \subset \cdots \subseteq y_{n} \subseteq X
$$

of irreducible closed subsets Y_{i} of X containing Y
Idea. Strict inclusions +irreducibility force $\operatorname{dim} Y_{i}<\operatorname{dim} Y_{i+1}$

- Ideally, for $\operatorname{dim}(x)<\infty$, a chain
 of maximal length in that definition should satisfy: $\operatorname{dim} Y_{i}=i$
(In) Sanity checks
(a) For $X=A A^{1}$, the closed, irreducible non-emply subsets are $\{a\}$ (for $a \in A^{1}$) and A^{1} itself
$\Rightarrow\{a\}=Y_{0} \subset Y_{1}=A 1^{1}$ is longest chain $\Rightarrow \operatorname{dim} A^{1}=1$.
(b) One might hope that any Noetherian top space has finite dimension. This is not the case:
Exercise Let $X=\mathbb{N}$ and $e=\{\varnothing, \mathbb{N}\} \cup\{\{0,1, \ldots, n\}: n \in \mathbb{N}\}$.
(i) Check that P gives the closed sets of a topology on X.
(ii) Prove that (X, C) is Noetherian.
(iii) Show that $\operatorname{dim}(X)=\infty$.

Dimension of affine varieties
When X is an affine variety, we can apply results from Commutative algebra (to its ring of functions $A(x)$) to compute dim ((x).
Recall
-The Krill dimension of a ring R is the supremum of n for

$$
R \supseteq P_{0} \supsetneq P_{1} \ngtr P_{2} \ngtr \cdots \supsetneqq P_{n n} \ngtr P_{n}
$$

a chain of prime ideals p_{i} of R.

- The height of a prime ideal $P \subseteq R$ is the corresponding supremum of lengts n of chains

$$
P=P_{0} \not \ni P_{1} \not \supsetneq \cdots \quad P_{n-1} \supseteq P_{n}
$$

contained in P.
Lem Let Y be a non-emply irreducible subvariety of an affine variety X.
(a) The dimension dim X equals the Krull dimension of $A(X)$.
(b) The codimension codimy x equals the height of $I_{x}(y)$. In particular: $\operatorname{dim}(x), \operatorname{codim} y(x)$ are finite.
Pf Correspondence $\{$ irr. subvar. of $x\} \rightleftarrows$ \{prime ideals of $A(x)\}$ relates chains of subvar. to chains of prime ideals above.
Their lengths are finite since $A(x)$ is a finitely generated K-algebra.

Exa (a) $\operatorname{dim} A 1^{n}=n$, since the Krull dimension of $K\left[x_{1} \ldots, \ldots x_{n}\right]_{\text {is }}^{(*)} n$.

$$
\left.\zeta\left\langle x_{1},-1 x_{n}\right\rangle \supsetneq\left\langle x_{1}, \ldots, x_{n-1}\right\rangle \nsupseteq \cdots \geq x_{1}\right\rangle ?\{0\} .
$$

$$
\begin{aligned}
& \text { (b) Consider } X=V\left(y-x^{2}\right) \subseteq A^{2} \\
& \Rightarrow A(X)=K[x, y] /\left\langle y-x^{2}\right\rangle \cong K[x] \\
& \Rightarrow \operatorname{dim}(X)=1 .
\end{aligned}
$$

Next: transfer results about dimension
 from commutative algebra.

Pro (Properties of dimension)
Let X, Y be nou-eupty irreducible affine varieties.
(a) We have $\operatorname{dim}(X \times Y)=\operatorname{dim} X+\operatorname{dim} Y$, with $X \times Y$ having the Zariski topology. © another way to see $\operatorname{dim} A^{n}=n$
(b) If $Y \leq X$ we have $\operatorname{dim} X=\operatorname{dim} Y+\operatorname{codim} x Y$. In particular, $\operatorname{codim} x\{a\}=\operatorname{dim} X$ for every point $a \in X$.
(c) If $f \in A(x)$ is non-zero, every irreducible component of $V_{x}(f)$ has codimension 1 in X
(and thus dimension $\operatorname{dim} X-1$).
Proof
(a) Have seen: $A(X \times y)=A(x) \otimes_{k} A(y)$

So we need to show: $\operatorname{dim} A(x), A(y)=\operatorname{dim} A(x)+\operatorname{dim} A(y)$.
Lam R,S fin gen. algebras over K and domains

$$
\Rightarrow \operatorname{dim} R \otimes_{k} S=\operatorname{dim} R+\operatorname{dim} S .
$$

Pf.idea For $n=\operatorname{dim} R, m=\operatorname{dim} S$ choose Nether normalizations
$K\left[x_{1}, \ldots, x_{n}\right] \hookrightarrow R$ and $K\left[y_{1}, \ldots, y_{n}\right] \hookrightarrow S$
$\xrightarrow{\text { cohere }} K\left[x_{1}, \ldots, x_{n}, y_{1} \ldots, y_{m}\right] \hookrightarrow R \otimes_{K} S$ also Noether norm.
(b) wee that all maximal chains of prime $\left.\} P_{n}\right\urcorner \cdots ? P P_{y} \mp P_{m-x} \supsetneq \cdots ? P_{0}$, ideals in $A(x)$ have the same length.
(c) is Krull's principal ideal theorem.

(comp.of $V(f) \hat{=}$ min. primes in $A(x) /\langle f\rangle$).

Dimension theory of reducible spaces
Many results above formulated for X imeduible aft var.

Pictures show two \rightarrow cannot be extended further
$\Rightarrow \operatorname{codim} x y_{0}=1$ and $\operatorname{codim} x z_{0}=2 . \leadsto$ local dimension of Guess: $\operatorname{dim} X=2$. X at $Y_{0}, Z_{\text {o }}$
To make this precise:
Exercise Let X be a top. space and $A \subseteq X$ any subset.
Show: $\operatorname{dim} A \leq \operatorname{dim} X$.
Exercise Let X be a Noetherian space and $Y \leq X$ irreducible Show that there exists an irred comp. of X containing Y.
Pro (a) If $X=X_{1} \cup \ldots \cup X_{r}$ is the irreducible decomposition of a Noetherian topological space, then $\operatorname{dim} X=\max \left\{\operatorname{dim} X_{1}, \ldots, \operatorname{dim} X_{r}\right\}$
(b) We always have $\operatorname{dim} X=\sup \{\operatorname{codim} x\{a\}: a \in X\}$.

$$
\text { Pf }(a)^{\prime \prime} \geq " \text { Since } X_{i} \leq X \xrightarrow{\text { Excuse }} \operatorname{dim} X_{i} \leq \operatorname{dim} X
$$

" \leq " If $\operatorname{dim} X \geqslant n$ we find a chain $Y_{0} c \cdots \subseteq Y_{n} \leq X$ of irred. Subsets $\Rightarrow \exists_{i}: Y_{n} \leq X_{i} \Rightarrow \operatorname{dim} X_{i} \geq n \Rightarrow \operatorname{dim} X=\max \{n:(x)\} \leq \max \left\{\operatorname{dim} X_{i}: i\right\}$.
(b) Exercise (or see [Gathmann, Remark 2.31].

While spaces like X above are nice for illustration, it is often possible to prove stronger results for spaces whose erred components all have the same dimension

Def (Pure-dimensional spaces)
(a) A Noetherian top. space X is said to be of pure dimension n if every irreducible component of x has dimension n.
(b) An affine variety X is called

- a curve if it is of pure dimension 1 .
- a surface if it is of pure dimension 2.
- a hypersurface in a pure-dimensional affine variety Y if $X \leq Y$ is an affine subvariety of pure dimension $\operatorname{dim} Y-1$.

Fancy example Given parameters $a_{1} b, c, \ldots \in K$, consider the cubic surface

$$
S=V\left(a \cdot x_{1}^{3}+b \cdot x_{1}^{2} x_{2}+c \cdot x_{1}^{2} x_{3}+\cdots+p x_{3}^{2}+q \cdot x_{1}+r \cdot x_{2}+S \cdot x_{3}+t\right) \subseteq A^{3}
$$

Unless $a=\cdots=s=0 \leadsto S$ is a non-empty hypersurface and a
Cool fact For most* values of $a_{1} b_{1} \ldots$, , surface
there are exactly 27 lines $L_{1}, L_{2}, \ldots, L_{27} \subseteq A_{3}^{3}$ contained in S
The union $L=L_{1} \cup-\cdots L_{27}$ is a reducible curve

27 Lines on a Cubic Surface - Greg Egan

* the set of $(a, b, \ldots, s, t) \in A^{20}$ with the above property is non-empty and Zaniski open.
\Leftrightarrow the set where the property fails is Zariski closed and not all of $A \mathbb{1}^{20}$, thus cut out by hon-trivial system of equations in $a_{1} b_{1} \ldots, t$.

Hypersurfaces and unique factorization domains
Have seen: Xirred. affine var., $Y=V_{x}(f), 0 \neq f \in A(x)$

$$
\Rightarrow Y \leq X \text { is hypersuiface } \quad(\operatorname{dim} Y=\operatorname{dim} X-1)
$$

Question What about " \Leftarrow "?
Answer depends on whether $A(X)$ is a unique factorization domain!
Recall An integral domain R is a unique factorization domain (uFA)) if any $O \neq X \in R$ can be written as
$x=u \cdot p_{1} \cdots \cdot p_{n}$ with $n \geq 0$, for u unit, P_{1} irreducible, and the p_{i} are unique up to permutation \& mult by units.

Pro Let R le a Noetherian integral domain (eg. $R=A(X), X$ ines. affvar.), Then the following are equivalent:
(a) Every prime ideal of height/codinension 1 in R is principal.
(b) R is a unique factorization domain.

Note For $R=A(x)$: prime ideals $P \leq A(x)$ of height $1 \quad \Rightarrow(a)$ says:
人 irreducible hyporsurfaces $\left.Y=V_{x}(\rho) \subseteq X\right\} \quad Y=V_{x}(f)$
Proof " $\Rightarrow " O \neq f \in R \Rightarrow$ either fired or $f=f_{1} \cdot f_{2}$
continue inductively decomposing f_{1}, f_{2} into ied. factors
Since R Noetherian $\frac{\text { similar a argument }}{\text { os mined deme }} \quad f=f_{1} \cdot f_{2} \cdots f_{n}$ for f_{1} irreducible
Claim fig are prime; This then implies uniqueness part of UFD-def:
prof If we have: $f=f_{1}^{\prime} \cdot f_{2}^{\prime} \ldots f_{n^{\prime}}^{\prime}$ a second fatariz $\Rightarrow \forall_{i}: f_{i}\left|f_{j}^{\prime}\right| f_{k} \Rightarrow f_{i} \sim f_{j}^{\prime}$ unto in its.
Let $P \subseteq R$ minimal prime containing fir $\frac{\text { Kneels }}{\text { PID term }} \operatorname{codim} P=1$
$\xrightarrow{(a g)} P=\langle g\rangle$ principal, and so g prime
$f_{i} \in P \Rightarrow g \mid f_{i}$, but f_{i} irked $\Rightarrow f_{i}=u \cdot g$, u unit $\Rightarrow f$ prime
${ }^{\prime} \Leftarrow " P \subseteq R$ prime codim $1 \Rightarrow\{0\} \notin P \subseteq R$ so choose $0 \neq f \in P$
As $P \neq R \Rightarrow f$ is not a unit
(b): R is UFD $\Rightarrow f_{1}=f_{1} \cdots f_{k}, f_{i} \in R$ irred. (infect: prime)
P is prime $, f \in P \Rightarrow \exists i: f_{i} \in P \Rightarrow \underset{\text { prime }}{\{0\} \subseteq} \subseteq \frac{\left.f_{i}\right\rangle}{\text { prime }} \subseteq P$
$\operatorname{codim} P=1 \Rightarrow\left\langle f_{i}\right\rangle=P$
$\Rightarrow P$ principal.

Example/Exeraise Let $R=K\left[x_{1}, x_{2}, x_{3}, x_{4}\right] /\left\langle x_{1} x_{4}-x_{2} x_{3}\right\rangle$. Show:
(a) R is an integral domain of dimension 3
(b) x_{1}, \ldots, x_{4} are irreducible, but not prime in $R .(\Rightarrow R$ is not UFD)
(c) $x_{1} x_{4}$ and $x_{2} x_{3}$ are deompos. of the same elem. in R that do not agree up to pormutation and units.
(d) $\left\langle x_{1}, x_{2}\right\rangle$ is a prime ideal of codim 1 in R that is not principal
$\Rightarrow Y=V\left(x_{1}, x_{2}\right) \subseteq V\left(x_{1} x_{4}-x_{2} x_{3}\right)=x$ is hypersurface in X whose ideal cannot le generated by one elem. in $A(X)$. Hint Use the grading of $K\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ (or: Zariskitangent spaces) Infect Y is also not at out as a set by a single elam. in $A(x)$ (there is no $g \in A(x): \quad Y=V_{x}(g)$)
see: [Vakie, The rising sea, Exercise 15.4.T].
Application Hypersurfaces in A^{n}.
$X \subseteq A^{n}$ hypersurface, $X=X_{1} \cup \ldots \cup X_{r}$ irred decomposition.
Since $R=A\left(A^{n}\right)=K\left[x_{1}, \ldots, x_{n}\right]$ is a पFD
$\xrightarrow{\text { Pro }} I\left(X_{i}\right)$ is codim. 1 prime ideal, so $I\left(X_{i}\right)=\left\langle f_{i}\right\rangle, f_{i} \in$ Rprime

$$
\begin{aligned}
& \Rightarrow I(X)=I\left(X_{1} v \cdots X_{r}\right)=\underbrace{I\left(X_{1}\right) \cap \cdots \cap \underbrace{I\left(X_{r}\right)}_{\left\langle f_{r}\right\rangle}}_{\left\langle f_{1}\right\rangle}=\underset{=f}{\left\langle f_{1} \cdot f_{2} \cdots f_{r}\right\rangle} \\
& \Rightarrow I(X)=\langle f\rangle \text { principal }
\end{aligned}
$$ and f is unique / units.

Def (Degree of affine hypersurface)
Let $X \subseteq A^{n}$ be a hypersurface and $I(X)=\langle f\rangle, f \in K\left[x_{1}, \ldots, x_{n}\right]$.
Then the degree of X (denoted $\operatorname{dog} X$) is defined as $\operatorname{dog} X=\operatorname{dog} f$.

$\operatorname{deg} X$		
1	linear hypersurface (or hyperplane)	
2	quadratic	11
3	cubic	1
\vdots	\vdots	

Appendix: Connected components
Def Let X be a topological space. A conneded component of X is a maximal conceded subset of X.
Pro X is the disjoint union of its conneded components. crucial exercise X top space,
$A_{i} \subseteq X$ convected ($i \in I$) with $\bigcap_{i \in I} A_{i} \neq 0$
$\Rightarrow \bigcup_{i \in I} A_{i}$ converted.
Proof of Proposition
For $x \in X$ one has that $\underset{\text { ch ex }}{\bigcup} A=\widetilde{X}_{x}$ is a conceded comp., $X \in \tilde{X}$
If $\widetilde{X}, \widetilde{x}^{\prime}$ are conn. comp. with $\widetilde{x}_{\cap} \widetilde{x}^{\prime} \neq \varnothing \Rightarrow \widetilde{X} \cup \widetilde{x}^{\prime}$ conned.
By maximality: $\widetilde{x}=\tilde{x} \cup \widetilde{x}^{\prime}=\widetilde{x}^{\prime}$.

Appendix: Basics of topology
Def A topology on a set x is the data of a set $e \subseteq P^{\prime \prime}(x)$ of subsets of X (called the closed sets of the topology) such that
(a) \varnothing and X are closed
(b) arbitrary intersections $\bigcap_{i \in I} Y_{i}$ of closed sets Y_{i} are closed
(c) finite unions $y_{1} \cup \cdots \cup Y_{r}$ of closed sets are closed.

A set $U \leq X$ is called open if $X \backslash U$ is closed.
The pair (X, e) is then called a topological space
Note Often a topology is specified by its set of opens $U \leq P(x)$. In algebraic geometry: specifying e is more natural \leadsto standard axioms for u are obtained from (a)-(c) above by taking complements in X.

Examples Let X be a set.
(a) Trivial topology: $e=\{\varnothing, x\}$
(b) Discrete topology: $e=\{A: A \leq X\}=P(X)$
(c) Cofinite topology: $e=\{A: A \leq X$ finite $\} \cup\{x\}$
(d) Euclidean topology on $X=\mathbb{R}^{n}: U=\left\{u \leq \mathbb{R}^{n}: \forall x \in U 7820: B_{8}(x) \leq U\right\}$

Constructions X topological space, $A \subseteq X$ subset
\rightarrow The closure

$$
\bar{A}=\bigcap_{\substack{Y \leq x \\ A \leq y}} y .
$$

is the smallest closed subset of X containing A.
\rightarrow The subspace topology on A is defined by $e_{A}=\{B \subseteq A: \exists Y \leq X$ closed with $B=A \cap Y\}$. If A dosed itself: $B \leq A$ closed $\Leftrightarrow B \leq X$ closed \& contained in A.
X, Y topological spaces
$\rightarrow f: X \rightarrow Y$ is continuous if for all $Z \subseteq Y$ closed, the preimage $f^{-1}(Z) \subseteq X$ is closed.
$\rightarrow X \times Y$ has the product topology: $U \subseteq X \times Y$ open if it is a finite union of sets $u_{i} \times V_{i}$ for $U_{i} \leq X_{i} V_{i} \leq Y$ open.

